По изменчивости информация бывает. Информационная безопасность

Технологии

Изменчивость – это возникновение индивидуальных различий. На основе изменчивости организмов появляется генетическое разнообразие форм, которые в результате действия естественного отбора преобразуются в новые подвиды и виды. Различают изменчивость модификационную, или фенотипическую, и мутационную, или генотипическую.

ТАБЛИЦА Сравнительная характеристика форм изменчивости (Т.Л. Богданова. Биология. Задания и упражнения. Пособие для поступающих в ВУЗы. М.,1991)

Формы изменчивости Причины появления Значение Примеры
Ненаследственная модификационная (фенотипическая) Изменение условий среды, в результате чего организм изменяется в пределах нормы реакции, заданной генотипом Адаптация – приспособление к данным условиям среды, выживание, сохранение потомства Белокочанная капуста в условиях жаркого климата не образует кочана. Породы лошадей и коров, завезенных в горы, становятся низкорослыми

Мутационная
Влияние внешних и внутренних мутагенных факторов, в результате чего происходит изменение в генах и хромосомах Материал для естественного и искусственного отбора, так как мутации могут быть полезные, вредные и безразличные, доминантные и рецессивные Появление полиплоидных форм в популяции растений или у некоторых животных (насекомых, рыб) приводит к их репродуктивной изоляции и образованию новых видов, родов – микроэволюции
Наследственная (генотипическая)
Комбинатнвная
Возникает стихийно в рамках популяции при скрещивании, когда у потомков появляются новые комбинации генов Распространение в популяции новых наследственных изменений, которые служат материалом для отбора Появление розовых цветков при скрещивании белоцветковой и красноцветковой примул. При скрещивании белого и серого кроликов может появиться черное потомство
Наследственная (генотипическая)
Соотносительная (коррелятивная)
Возникает в результате свойства генов влиять на формирование не одного, а двух и более признаков Постоянство взаимосвязанных признаков, целостность организма как системы Длинноногие животные имеют длинную шею. У столовых сортов свеклы согласованно изменяется окраска корнеплода, черешков и жилок листа

Модификационная изменчивость

Модификационная изменчивость не вызывает изменений генотипа, она связана с реакцией данного, одного и того же генотипа на изменение внешней среды: в оптимальных условиях выявляется максимум возможностей, присущих данному генотипу. Так, продуктивность беспородных животных в условиях улучшенного содержания и ухода повышается (надои молока, нагул мяса). В этом случае все особи с одинаковым генотипом отвечают на внешние условия одинаково (Ч. Дарвин этот тип изменчивости назвал определенной изменчивостью). Однако другой признак – жирность молока – слабо подвержен изменениям условий среды, а масть животного – еще более устойчивый признак. Модификационная изменчивость обычно колеблется в определенных пределах. Степень варьирования признака у организма, т. е. пределы модификационной изменчивости, называется нормой реакции.

Широкая норма реакции свойственна таким признакам, как удои молока, размеры листьев, окраска у некоторых бабочек; узкая норма реакции – жирности молока, яйценоскости у кур, интенсивности окраски венчиков у цветков и др.

Фенотип формируется в результате взаимодействий генотипа и факторов среды. Фенотипические признаки не передаются от родителей потомкам, наследуется лишь норма реакции, т. е. характер реагирования на изменение окружающих условий. У гетерозиготных организмов при изменении условий среды можно вызвать различные проявления данного признака.

Свойства модификаций: 1) ненаследуемость; 2) групповой характер изменений; 3) соотнесение изменений действию определенного фактора среды; 4) обусловленность пределов изменчивости генотипом.

Генотипическая изменчивость

Генотипическая изменчивость подразделяется на мутационную и комбинативную. Мутациями называются скачкообразные и устойчивые изменения единиц наследственности – генов, влекущие за собой изменения наследственных признаков. Термин «мутация» был впервые введен де Фризом. Мутации обязательно вызывают изменения генотипа, которые наследуются потомством и не связаны со скрещиванием и рекомбинацией генов.

Классификация мутаций. Мутации можно объединять, в группы – классифицировать по характеру проявления, по месту или, по уровню их возникновения.

Мутации по характеру проявления бывают доминантными и рецессивными. Мутации нередко понижают жизнеспособность или плодовитость. Мутации, резко снижающие жизнеспособность, частично или полностью останавливающие развитие, называют полулетальными а несовместимые с жизнью – летальными. Мутации подразделяют по месту их возникновения. Мутация, возникшая в половых клетках, не влияет на признаки данного организма, а проявляется только в следующем поколении. Такие мутации называют генеративными. Если изменяются гены в соматических клетках, такие мутации проявляются у данного организма и не передаются потомству при половом размножении. Но при бесполом размножении, если организм развивается из клетки или группы клеток, имеющих изменившийся – мутировавший – ген, мутации могут передаваться потомству. Такие мутации называют соматическими.

Мутации классифицируют по уровню их возникновения. Существуют хромосомные и генные мутации. К мутациям относится также изменение кариотипа (изменение числа хромосом).. Полиплоидия – увеличение числа хромосом, кратное гаплоидному набору. В соответствии с этим у растений различают триплоиды (Зп), тетраплоиды (4п) и т. д. В растениеводстве известно более 500 полиплоидов (сахарная свекла, виноград, гречиха, мята, редис, лук и др.). Все они выделяются большой вегетативной массой и имеют большую хозяйственную ценность.

Большое многообразие полиплоидов наблюдается в цветоводстве: если одна исходная форма в гаплоидном наборе имела 9 хромосом, то культивируемые растения этого вида могут иметь 18, 36, 54 и до 198 хромосом. Полиплоиды пблучают в результате воздействия на растения температуры, ионизирующей радиации, химических веществ (колхицин), которые разрушают веретено деления клетки. У таких растений гаметы диплоидны, а при слиянии с гаплоидными половыми клетками партнера в зиготе возникает триплоидный набор хромосом (2п + п = Зп). Такие триплоиды не образуют семян, они бесплодны, но высокоурожайны. Четные полиплоиды образуют семена.

Гетероплоидия – изменение числа Хромосом, не кратное гаплоидному набору. При этом набор хромосом в клетке может быть увеличен на одну, две, три хромосомы (2п + 1; 2п + 2; 2п + 3) или уменьшен на одну хромосому (2л-1). Например, у человека с синдромом Дауна оказывается одна лишняя хромосома по 21-й паре и кариотип такого человека составляет 47 хромосом У людей с синдромом Шерешевского – Тернера (2п-1) отсутствует одна Х-хромосома и в кариотипе остается 45 хромосом. Эти и другие подобные отклонения числовых отношений в кариотипе человека сопровождаются расстройством здоровья, нарушением психики и телосложения, снижением жизнеспособности и др.

Хромосомные мутации связаны с изменением структуры хромосом. Существуют следующие виды перестроек хромосом: отрыв различных участков хромосомы, удвоение отдельных фрагментов, поворот участка хромосомы на 180° или присоединение отдельного участка хромосомы к другой хромосоме. Подобное изменение влечет за собой нарушение функции генов в хромосоме и наследственных свойств организма, а иногда и его гибель.

Генные мутации затрагивают структуру самого гена и влекут за собой изменение свойств организма (гемофилия, дальтонизм, альбинизм, окраска венчиков цветков и т. д.). Генные мутации возникают как в соматических, так и в половых клетках. Они могут быть доминантными и рецессивными. Первые проявляются как у гомозигот, так и. у гетерозигот, вторые – только у гомозигот. У растений возникшие соматические генные мутации сохраняются при вегетативном размножении. Мутации в половых клетках наследуются при семенном размножении растений и при половом размножении животных. Одни мутации оказывают на организм положительное действие, другие безразличны, а третьи вредны, вызывая либо гибель организма, либо ослабление его жизнеспособности (например, серповидноклеточная анемия, гемофилия у человека).

При выведении новых сортов растений и штаммов микроорганизмов используют индуцированные мутации, искусственно вызываемые теми или иными мутагенными факторами (рентгеновские или ультрафиолетовые лучи, химические вещества). Затем проводят отбор полученных мутантов, сохраняя наиболее продуктивные. В нашей стране этими методами получено много хозяйственно перспективных сортов растений: неполегающие пшеницы с крупным колосом, устойчивые к заболеваниям; высокоурожайные томаты; хлопчатник с крупными коробочками и др.

Свойства мутаций:

1. Мутации возникают внезапно, скачкообразно.
2. Мутации наследственны, т. е. стойко передаются из поколения в поколение.
3. Мутации ненаправденны – мутировать может любой локус, вызывая изменения как незначительных, так и жизненно важных признаков.
4. Одни и те же мутации могут возникать повторно.
5. По своему проявлению мутации могут быть полезными и вредными, доминантными и рецессивными.

Способность к мутированию – одно из свойств гена. Каждая отдельная мутация вызывается какой-то причиной, но в большинстве случаев эти причины неизвестны. Мутации связаны с изменениями во внешней среде. Это убедительно доказывается тем, что путем воздействия внешними факторами удается резко повысить их число.

Комбинативная изменчивость

Комбинативная наследственная изменчивость возникает в результате обмена гомологичными участками гомологичных хромосом в процессе мейоза, а также как следствие независимого расхождения хромосом при мейозе и случайного их сочетания при скрещивании. Изменчивость может быть обусловлена не только мутациями, но и сочетаниями отдельных генов и хромосом, новая комбинация которых при размножении приводит к изменению определенных признаков и свойств организма. Такой тип изменчивости называют комбинативной наследственной изменчивостью. Новые комбинации генов возникают: 1) при кроссинговере, во время профазы первого мейотического деления; 2) во время независимого расхождения гомологичных хромосом в анафазе первого мейотического деления; 3) во время независимого расхождения дочерних хромосом в анафазе второго мейотического деления и 4) при слиянии разных половых клеток. Сочетание в зиготе рекомбинированных генов может привести к объединению признаков разных пород и сортов.

В селекции важное значение имеет закон гомблогических рядов наследственной изменчивости, сформулированный советским ученым Н. И. Вавиловым. Он гласит: внутри разных видов и родов, генетически близких (т. е. имеющих единое происхождение), наблюдаются сходные ряды наследственной изменчивости. Такой характер изменчивости выявлен у многих злаков (рис, пшеница, овес, просо и др.), у которых сходно варьируют окраска и консистенция зерна, холодостойкость и иные качества. Зная характер наследственных изменений у одних сортов, можно предвидеть сходные изменения у родственных видов и, воздействуя на них мутагенами, вызывать у них подобные полезные изменения, что значительно облегчает получение хозяйственно ценных форм. Известны многие примеры гомологической изменчивости и у человека; например, альбинизм (дефект синтеза клетками красящего вещества) обнаружен у европейцев, негров и индейцев; среди млекопитающих – у грызунов, хищных, приматов; малорослые темнокожие люди – пигмеи – встречаются в тропических лесах экваториальной Африки, на Филиппинских островах и в джунглях полуострова Малакки; некоторые наследственные дефекты и уродства, присущие человеку, отмечены и у животных. Таких животных используют в качестве модели для изучения аналогичных дефектов у человека. Например, катаракта глаза бывает у мыши, крысы, собаки, лошади; гемофилия – у мыши и кошки, диабет – у крысы; врожденная глухота – у морской свинки, мыши, собаки; заячья губа – у мыши, собаки, свиньи и т. д. Эти наследственные дефекты – убедительное подтверждение закона гомологических рядов наследственной изменчивости Н. И. Вавилова.

Таблица. Сравнительная характеристика форм изменчивости (Т.Л. Богданова. Биология. Задания и упражнения. Пособие для поступающих в ВУЗы. М.,1991)

Характеристика Модификационная изменчивость Мутационная изменчивость
Объект изменения Фенотип в пределах нормы реакции Генотип
Отбирающий фактор Изменение условий окружающей
среды
Изменение условий окружающей среды
Наследование при
знаков
Не наследуются Наследуются
Подверженность изменениям хромосом Не подвергаются Подвергаются при хромосомной мутации
Подверженность изменениям молекул ДНК Не подвергаются Подвергаются в случае
генной мутации
Значение для особи Повышает или
понижает жизнеспособность. продуктивность, адаптацию
Полезные изменения
приводят к победе в борьбе за существование,
вредные – к гибели
Значение для вида Способствует
выживанию
Приводит к образованию новых популяций, видов и т. д. в результате дивергенции
Роль в эволюции Приспособление
организмов к условиям среды
Материал для естественного отбора
Форма изменчивости Определенная
(групповая)
Неопределенная (индивидуальная), комбинативная
Подчиненность закономерности Статистическая
закономерность
вариационных рядов
Закон гомологических
рядов наследственной изменчивости

Информация (от лат. informatio, разъяснение, изложение, осведомлённость) - сведения о чём-либо, независимо от формы их представления.

В настоящее время не существует единого определения информации как научного термина. С точки зрения различных областей знания данное понятие описывается своим специфическим набором признаков. Например, понятие «информация» является базовым в курсе информатики, и невозможно дать его определение через другие, более «простые» понятия (так же, в геометрии, например, невозможно выразить содержание базовых понятий «точка», «луч», «плоскость» через более простые понятия). Содержание основных, базовых понятий в любой науке должно быть пояснено на примерах или выявлено путём их сопоставления с содержанием других понятий. В случае с понятием «информация» проблема его определения ещё более сложная, так как оно является общенаучным понятием. Данное понятие используется в различных науках (информатике, кибернетике, биологии, физике и др.), при этом в каждой науке понятие «информация» связано с различными системами понятий.

История понятия

Слово «информация» происходит от лат. informatio, что в переводе обозначает сведение, разъяснение, ознакомление. Понятие информации рассматривалось ещё античными философами.

До начала промышленной революции, определение сути информации оставалось прерогативой преимущественно философов. В XX веке вопросами теории информации стали заниматься кибернетика и информатика.

Классификация информации

Информацию можно разделить на виды по различным критериям:

по способу восприятия :

по форме представления :

по назначению :

по значению :

  • Актуальная - информация, ценная в данный момент времени.
  • Достоверная - информация, полученная без искажений.
  • Понятная - информация, выраженная на языке, понятном тому, кому она предназначена.
  • Полная - информация, достаточная для принятия правильного решения или понимания.
  • Полезная - полезность информации определяется субъектом, получившим информацию в зависимости от объёма возможностей её использования.

по истинности :

Значение термина в различных областях знания

Философия

Традиционализм субъективного постоянно доминировал в ранних философских определениях информации, как категории, понятия, свойства материального мира. Информация существует независимо от нашего сознания, и может иметь отражение в нашем восприятии только как результат взаимодействия: отражения, чтения, получения в виде сигнала, стимула. Информация нематериальна, как и все свойства материи. Информация стоит в ряду: материя, пространство, время, системность, функция, и др. что есть основополагающие понятия формализованного отражения объективной реальности в её распространении и изменчивости, разнообразии и проявленности. Информация - свойство материи и отражает её свойства (состояние или способность взаимодействия) и количество (мера) путём взаимодействия.

С материальной точки зрения информация - это порядок следования объектов материального мира. Например, порядок следования букв на листе бумаги по определенным правилам является письменной информацией. Порядок следования разноцветных точек на листе бумаги по определенным правилам является графической информацией. Порядок следования музыкальных нот является музыкальной информацией. Порядок следования генов в ДНК является наследственной информацией. Порядок следования битов в ЭВМ является компьютерной информацией и т. д. и т. п. Для осуществления информационного обмена требуется наличие необходимых и достаточных условий.

Необходимые условия:

  1. Наличие не менее двух различных объектов материального или нематериального мира.
  2. Наличие у объектов общего свойства, позволяющего идентифицировать объекты в качестве носителя информации.
  3. Наличие у объектов специфического свойства, позволяющего различать объекты друг от друга.
  4. Наличие свойства пространства, позволяющее определить порядок следования объектов. Например, расположение письменной информации на бумаге - это специфическое свойство бумаги, позволяющее располагать буквы слева направо и сверху вниз.

Достаточное условие одно:

Наличие субъекта, способного распознавать информацию. Это человек и человеческое общество, общества животных, роботов и т. д.

Различные объекты (буквы, символы, картинки, звуки, слова, предложения, ноты и тп.) взятые по одному разу образуют базис информации. Информационное сообщение строится путем выбора из базиса копий объектов и расположение этих объектов в пространстве в определенном порядке. Длина информационного сообщения определяется как количество копий объектов базиса и всегда выражается целым числом. Необходимо различать длину информационного сообщения, которое всегда измеряется целым числом, и количество знаний, содержащегося в информационном сообщении, которое измеряется в неизвестной единице измерения.

С математической точки зрения информация - это последовательность целых чисел, которые записаны в вектор. Числа - это номер объекта в базисе информации. Вектор называется инвариантом информации, так как он не зависит от физической природы объектов базиса. Одно и то же информационное сообщение может быть выражено буквами, словами, предложениями, файлами, картинками, нотами, песнями, видеоклипами, любой комбинацией всех ранее названных. Чем бы мы ни выражали информацию - изменяется только базис, а не инвариант.

В информатике

Предметом изучения науки информатика являются именно данные: методы их создания, хранения, обработки и передачи. А сама информация, зафиксированная в данных, её содержательный смысл интересны пользователям информационных систем, являющимся специалистами различных наук и областей деятельности: медика интересует медицинская информация, геолога - геологическая, предпринимателя - коммерческая и т. п. (в том числе специалиста по информатике интересует информация по вопросам работы с данными).

Системология

Работа с информацией связана с преобразованиями и всегда подтверждает её материальную природу:

  • запись - формирование структуры материи и модуляции потоков путём взаимодействия инструмента с носителем;
  • хранение - стабильность структуры (квазистатика) и модуляции (квазидинамика);
  • чтение (изучение) - взаимодействие зонда (инструмента, преобразователя, детектора) с субстратом или потоком материи.

Системология рассматривает информацию через связь с другими основаниями: I=S/F, где: I - информация; S - системность мироздания; F - функциональная связь; M - материя; v - (v подчёркнутое) знак великого объединения (системности, единства оснований); R - пространство; T - Время.

В физике

Объекты материального мира находятся в состоянии непрерывного изменения, которое характеризуется обменом энергией объекта с окружающей средой. Изменение состояния одного объекта всегда приводит к изменению состояния некоторого другого объекта окружающей среды. Это явление вне зависимости от того, как, какие именно состояния и каких именно объектов изменились, может рассматриваться как передача сигнала от одного объекта другому. Изменение состояния объекта при передаче ему сигнала называется регистрацией сигнала.

Сигнал или последовательность сигналов образуют сообщение, которое может быть воспринято получателем в том или ином виде, а также в том или ином объёме. Информация в физике есть термин, качественно обобщающий понятия «сигнал» и «сообщение». Если сигналы и сообщения можно исчислять количественно, то можно сказать, что сигналы и сообщения являются единицами измерения объёма информации.

Одно и то же сообщение (сигнал) разными системами интерпретируется по-своему. Например, последовательно длинный и два коротких звуковых (а тем более в символьном кодировании -..) сигнала в терминологии азбуки Морзе - это буква Д (или D), в терминологии БИОС от фирмы AWARD - неисправность видеокарты.

В математике

В математике теория информации (математическая теория связи) - раздел прикладной математики, определяющий понятие информации, её свойства и устанавливающий предельные соотношения для систем передачи данных. Основные разделы теории информации - кодирование источника (сжимающее кодирование) и канальное (помехоустойчивое) кодирование. Математика является больше чем научной дисциплиной. Она создает единый язык всей Науки.

Предметом исследований математики являются абстрактные объекты: число, функция, вектор, множество, и другие. При этом большинство из них вводится акcиоматически (аксиома), то есть без всякой связи с другими понятиями и без какого-либо определения.

Информация не входит в число предметов исследования математики. Тем не менее, слово «информация» употребляется в математических терминах - собственная информация и взаимная информация, относящихся к абстрактной (математической) части теории информации. Однако, в математической теории понятие «информация» связано с исключительно абстрактными объектами - случайными величинами, в то время как в современной теории информации это понятие рассматривается значительно шире - как свойство материальных объектов.

Связь между этими двумя одинаковыми терминами несомненна. Именно математический аппарат случайных чисел использовал автор теории информации Клод Шеннон. Сам он подразумевает под термином «информация» нечто фундаментальное (нередуцируемое). В теории Шеннона интуитивно полагается, что информация имеет содержание. Информация уменьшает общую неопределённость и информационную энтропию. Количество информации доступно измерению. Однако он предостерегает исследователей от механического переноса понятий из его теории в другие области науки.

«Поиск путей применения теории информации в других областях науки не сводится к тривиальному переносу терминов из одной области науки в другую. Этот поиск осуществляется в длительном процессе выдвижения новых гипотез и их экспериментальной проверке.» К. Шеннон.

В юриспруденции

Правовое определение понятия «информация» дано в федеральном законе от 27 июля 2006 года № 149-ФЗ «Об информации, информационных технологиях и о защите информации» (Статья 2): «информация - сведения (сообщения, данные) независимо от формы их представления».

Федеральный закон № 149-ФЗ определяет и закрепляет права на защиту информации и информационную безопасность граждан и организаций в ЭВМ и в информационных системах, а также вопросы информационной безопасности граждан, организаций, общества и государства.

В теории управления

В теории управления (кибернетике), предметом исследования которой являются основные законы управления, то есть развития систем управления, информацией называются сообщения, получаемые системой из внешнего мира при адаптивном управлении (приспособлении, самосохранении системы управления).

Основоположник кибернетики Норберт Винер говорил об информации так:

"Информация - это не материя и не энергия, информация - это информация". Но основное определение информации, которое он дал в нескольких своих книгах, следующее: информация - это обозначение содержания, полученное нами из внешнего мира в процессе приспосабливания к нему нас и наших чувств .

- Н. Винер Кибернетика, или управление и связь в животном и машине; или Кибернетика и общество

Эта мысль Винера дает прямое указание на объективность информации, то есть её существование в природе независимо от сознания (восприятия) человека.

Объективную информацию современная кибернетика определяет как объективное свойство материальных объектов и явлений порождать многообразие состояний, которые посредством фундаментальных взаимодействий материи передаются от одного объекта (процесса) другому, и запечатлеваются в его структуре.

Материальная система в кибернетике рассматривается как множество объектов, которые сами по себе могут находиться в различных состояниях, но состояние каждого из них определяется состояниями других объектов системы. В природе множество состояний системы представляет собой информацию, сами состояния представляют собой первичный код, или код источника. Таким образом, каждая материальная система является источником информации.

Субъективную (семантическую) информацию кибернетика определяет как смысл или содержание сообщения. (см. там же) Информация - это характеристика объекта.

Дезинформация

Дезинформацией (также дезинформированием) называется один из способов манипулирования информацией, как то введение кого-либо в заблуждение путём предоставления неполной информации или полной, но уже не нужной информации, или полной, но не в нужной области, искажения контекста, искажения части информации.

Цель такого воздействия всегда одна - оппонент должен поступить так, как это необходимо манипулятору. Поступок объекта, против которого направлена дезинформация, может заключаться в принятии нужного манипулятору решения или в отказе от принятия невыгодного для манипулятора решения. Но в любом случае конечная цель - это действие, которое будет предпринято.

Рассматриваются основные понятия информатики – алфавит, слово, информация, сообщение, измерение сообщений и информации, виды и свойства информации, меры количества информации (по Хартли и Шеннону), их свойства и значение, вопросы связанные с информационными системами и управлением в системе.

Понятие информации является наиболее сложным для понимания и обычно во вводных курсах информатики не определяется, принимается как исходное базовое понятие, понимается интуитивно, наивно. Часто это понятие отождествляется неправильным образом с понятием "сообщение" .

Понятие "информация" имеет различные трактовки в разных предметных областях. Например, информация может пониматься как:

    абстракция, абстрактная модель рассматриваемой системы (в математике);

    сигналы для управления, приспособления рассматриваемой системы (в кибернетике);

    мера хаоса в рассматриваемой системе (в термодинамике);

    вероятность выбора в рассматриваемой системе (в теории вероятностей);

    мера разнообразия в рассматриваемой системе (в биологии) и др.

Рассмотрим это фундаментальное понятие информатики на основе понятия "алфавит" ("алфавитный", формальный подход). Дадим формальное определение алфавита .

Алфавит – конечное множество различных знаков, символов, для которых определена операция конкатенации (приписывания, присоединения символа к символу или цепочке символов); с ее помощью по определенным правилам соединения символов и слов можно получать слова (цепочки знаков) и словосочетания (цепочки слов ) в этом алфавите (над этим алфавитом ).

Буквой или знаком называется любой элемент x алфавита X , где
. Понятие знака неразрывно связано с тем, что им обозначается ("со смыслом"), они вместе могут рассматриваться как пара элементов(x , y ), где x – сам знак, а y – обозначаемое этим знаком.

Пример. Примеры алфавитов : множество из десяти цифр, множество из знаков русского языка, точка и тире в азбуке Морзе и др. В алфавите цифр знак 5 связан с понятием "быть в количестве пяти элементов".

Конечная последовательность букв алфавита называется словом в алфавите (или над алфавитом ).

Длиной |p| некоторого слова p над алфавитом Х называется число составляющих его букв .

Слово (обозначаемое символом Ø) имеющее нулевую длину , называется пустым словом : |Ø| = 0.

Множество различных слов над алфавитом X обозначим через S (X ) и назовем словарным запасом (словарем) алфавита (над алфавитом ) X .

В отличие от конечного алфавита , словарный запас может быть и бесконечным.

Слова над некоторым заданным алфавитом и определяют так называемые сообщения .

Пример. Слова над алфавитом кириллицы – "Информатика", "инто", "ииии", "и". Слова над алфавитом десятичных цифр и знаков арифметических операций – "1256", "23+78", "35–6+89". Слова над алфавитом азбуки Морзе – ".", ". . –", "– – –".

В алфавите должен быть определен порядок следования букв (порядок типа "предыдущий элемент – последующий элемент"), то есть любой алфавит имеет упорядоченный вид X = {x 1 , x 2 , …, x n } .

Таким образом, алфавит должен позволять решать задачу лексикографического (алфавитного) упорядочивания, или задачу расположения слов над этим алфавитом , в соответствии с порядком, определенным в алфавите (то есть по символам алфавита ).

Информация – это некоторая упорядоченная последовательность сообщений , отражающих, передающих и увеличивающих наши знания.

Информация актуализируется с помощью различной формы сообщений – определенного вида сигналов, символов.

Информация по отношению к источнику или приемнику бывает трех типов: входная, выходная и внутренняя .

Информация по отношению к конечному результату бывает исходная, промежуточная и результирующая .

Информация по ее изменчивости бывает постоянная, переменная и смешанная .

Информация по стадии ее использования бывает первичная и вторичная .

Информация по ее полноте бывает избыточная, достаточная и недостаточная .

Информация по доступу к ней бывает открытая и закрытая .

Есть и другие типы классификации информации .

Пример. В философском аспекте информация делится на мировозренческую, эстетическую, религиозную, научную, бытовую, техническую, экономическую, технологическую .

Основные свойства информации :

  • актуальность;

    адекватность;

    понятность;

    достоверность;

    массовость;

    устойчивость;

    ценность и др.

Информация – содержание сообщения , сообщение – форма информации .

Любые сообщения измеряются в байтах , килобайтах , мегабайтах , гигабайтах , терабайтах , петабайтах и эксабайтах , а кодируются, например, в компьютере, с помощью алфавита из нулей и единиц, записываются и реализуются в ЭВМ в битах .

Приведем основные соотношения между единицами измерения сообщений :

1 бит (bi nary digit – двоичное число) = 0 или 1,

1 байт 8 битов ,

1 килобайт (1К) = 2 13 бит ,

1 мегабайт (1М) = 2 23 бит ,

1 гигабайт (1Г) = 2 33 бит ,

1 терабайт (1Т) = 2 43 бит ,

1 петабайт (1П) = 2 53 бит ,

1 эксабайт (1Э) = 2 63 бит .

Пример. Найти неизвестные х и у, если верны соотношения:

128 y (К) = 32 x (бит );

2 x (М) = 2 y (байт ).

Выравниваем единицы измерения информации :

2 7y (K) = 2 7y+13 (бит );

2 x (M) = 2 x+20 (байт ).

Подставляя в уравнения и отбрасывая размерности информации , получаем:

Отсюда получаем систему двух алгебраических уравнений:

или, решая эту систему, окончательно получаем, x = –76,5, у = –56,5.

Для измерения информации используются различные подходы и методы, например, с использованием меры информации по Р. Хартли и К. Шеннону.

Количество информации – число, адекватно характеризующее разнообразие (структурированность, определенность, выбор состояний и т.д.) в оцениваемой системе. Количество информации часто оценивается в битах , причем такая оценка может выражаться и в долях битов (так речь идет не об измерении или кодировании сообщений ).

Мера информации – критерий оценки количества информации. Обычно она задана некоторой неотрицательной функцией, определенной на множестве событий и являющейся аддитивной, то есть мера конечного объединения событий (множеств) равна сумме мер каждого события.

Рассмотрим различные меры информации.

Возьмем меру Р. Хартли. Пусть известны N состояний системы S (N опытов с различными, равновозможными, последовательными состояниями системы). Если каждое состояние системы закодировать двоичными кодами, то длину кода d необходимо выбрать так, чтобы число всех различных комбинаций было бы не меньше, чем N :

Логарифмируя это неравенство, можно записать:

Наименьшее решение этого неравенства или мера разнообразия множества состояний системы задается формулой Р. Хартли :

(бит ).

Пример. Чтобы определить состояние системы из четырех возможных состояний, то есть получить некоторую информацию о системе, необходимо задать 2 вопроса. Первый вопрос, например: "Номер состояния больше 2?". Узнав ответ ("да", "нет"), мы увеличиваем суммарную информацию о системе на 1 бит (I = log 2 2). Далее необходим еще один уточняющий вопрос, например, при ответе "да": "Состояние – номер 3?". Итак, количество информации равно 2 битам (I = log 2 4). Если система имеет n различных состояний, то максимальное количество информации равно I = log 2 n .

Если во множестве X = {x 1 , x 2 , ..., x n } искать произвольный элемент, то для его нахождения (по Хартли) необходимо иметь не менее log a n (единиц) информации .

Уменьшение Н говорит об уменьшении разнообразия состояний N системы.

Увеличение Н говорит об увеличении разнообразия состояний N системы.

Мера Хартли подходит лишь для идеальных, абстрактных систем, так как в реальных системах состояния системы не одинаково осуществимы (не равновероятны).

Для таких систем используют более подходящую меру К. Шеннона. Мера Шеннона оценивает информацию отвлеченно от ее смысла:

,

где n – число состояний системы; р i – вероятность (относительная частота) перехода системы в i -е состояние, а сумма всех p i должна равняться 1.

Если все состояния рассматриваемой системы равновозможны, равновероятны, то есть р i = 1/n , то из формулы Шеннона можно получить (как частный случай) формулу Хартли :

I = log 2 n .

Пример. Если положение точки в системе из 10 клеток известно, например если точка находится во второй клетке, то есть

р i = 0, i = 1, 3, 4, …, 10, р 2 = 1 ,

то тогда получаем количество информации, равное нулю I = log 2 1 = 0 .

Обозначим величину:
. Тогда изформулы К. Шеннона следует, что количество информации I можно понимать как среднеарифметическое величин f i , то есть величину f i можно интерпретировать как информационное содержание символа алфавита с индексом i и величиной p i вероятности появления этого символа в любом сообщении (слове ), передающем информацию .

В термодинамике известен так называемый коэффициент Больцмана K = 1.38 × 10 –16 (эрг/град) и выражение (формула Больцмана ) для энтропии или меры хаоса в термодинамической системе:

.

Сравнивая выражения для I и S , можно заключить, что величину I можно понимать как энтропию из-за нехватки информации в системе (о системе).

Основное функциональное соотношение между энтропией и информацией имеет вид:

Из этой формулы следуют важные выводы:

    увеличение меры Шеннона свидетельствует об уменьшении энтропии (увеличении порядка) системы;

    уменьшение меры Шеннона свидетельствует об увеличении энтропии (увеличении беспорядка) системы.

Положительная сторона формулы Шеннона – ее отвлеченность от смысла информации . Кроме того, в отличие от формулы Хартли , она учитывает различность состояний, что делает ее пригодной для практических вычислений. Основная отрицательная сторона формулы Шеннона – она не распознает различные состояния системы с одинаковой вероятностью.

Методы получения информации можно разбить на три большие группы.

    Эмпирические методы или методы получения эмпирических данных.

    Теоретические методы или методы построения различных теорий.

    Эмпирико-теоретические методы (смешанные) или методы построения теорий на основе полученных эмпирических данных об объекте, процессе, явлении.

Охарактеризуем кратко эмпирические методы.

    Наблюдение – сбор первичной информации об объекте, процессе, явлении.

    Сравнение – обнаружение и соотнесение общего и различного.

    Измерение – поиск с помощью измерительных приборов эмпирических фактов.

    Эксперимент – преобразование, рассмотрение объекта, процесса, явления с целью выявления каких-то новых свойств.

Кроме классических форм их реализации, в последнее время используются опрос, интервью, тестирование и другие.

Охарактеризуем кратко эмпирико-теоретические методы.

    Абстрагирование – выделение наиболее важных для исследования свойств, сторон исследуемого объекта, процесса, явления и игнорирование несущественных и второстепенных.

    Анализ – разъединение целого на части с целью выявления их связей.

    Декомпозиция – разъединение целого на части с сохранением их связей с окружением.

    Синтез – соединение частей в целое с целью выявления их взаимосвязей.

    Композиция - соединение частей целого с сохранением их взаимосвязей с окружением.

    Индукция – получение знания о целом по знаниям о частях.

    Дедукция – получение знания о частях по знаниям о целом.

    Эвристики, использование эвристических процедур – получение знания о целом по знаниям о частях и по наблюдениям, опыту, интуиции, предвидению.

    Моделирование (простое моделирование) , использование приборов – получение знания о целом или о его частях с помощью модели или приборов.

    Исторический метод – поиск знаний с использованием предыстории, реально существовавшей или же мыслимой.

    Логический метод – поиск знаний путем воспроизведения частей, связей или элементов в мышлении.

    Макетирование – получение информации по макету, представлению частей в упрощенном, но целостном виде.

    Актуализация – получение информации с помощью перевода целого или его частей (а следовательно, и целого) из статического состояния в динамическое состояние.

    Визуализация – получение информации с помощью наглядного или визуального представления состояний объекта, процесса, явления.

Кроме указанных классических форм реализации теоретико-эмпирических методов часто используются и мониторинг (система наблюдений и анализа состояний), деловые игры и ситуации, экспертные оценки (экспертное оценивание), имитация (подражание) и другие формы.

Охарактеризуем кратко теоретические методы.

    Восхождение от абстрактного к конкретному – получение знаний о целом или о его частях на основе знаний об абстрактных проявлениях в сознании, в мышлении.

    Идеализация – получение знаний о целом или его частях путем представления в мышлении целого или частей, не существующих в действительности.

    Формализация – получение знаний о целом или его частях с помощью языков искусственного происхождения (формальное описание, представление).

    Аксиоматизация – получение знаний о целом или его частях с помощью некоторых аксиом (не доказываемых в данной теории утверждений) и правил получения из них (и из ранее полученных утверждений) новых верных утверждений.

    Виртуализация – получение знаний о целом или его частях с помощью искусственной среды, ситуации.

Пример. Для построения модели планирования и управления производством в рамках страны, региона или крупной отрасли нужно решить следующие проблемы:

    определить структурные связи, уровни управления и принятия решений, ресурсы; при этом чаще используются методы наблюдения, сравнения, измерения, эксперимента, анализа и синтеза, дедукции и индукции, эвристический, исторический и логический методы, макетирование и др.;

    определить гипотезы, цели, возможные проблемы планирования; наиболее используемые методы – наблюдение, сравнение, эксперимент, абстрагирование, анализ, синтез, дедукция, индукция, эвристический, исторический, логический и др.;

    конструирование эмпирических моделей; наиболее используемые методы – абстрагирование, анализ, синтез, индукция, дедукция, формализация, идеализация и др.;

    поиск решения проблемы планирования и просчет различных вариантов, директив планирования, поиск оптимального решения; используемые чаще методы – измерение, сравнение, эксперимент, анализ, синтез, индукция, дедукция, актуализация, макетирование, визуализация, виртуализация и др.

Суть задачи управления системой – отделение ценной информации от "шумов" (бесполезного, иногда даже вредного для системы возмущения информации ) и выделение информации , которая позволяет этой системе существовать и развиваться.

Информационная система – это система, в которой элементы, структура, цель, ресурсы рассматриваются на информационном уровне (хотя, естественно, имеются и другие уровни рассмотрения).

Информационная среда – это среда (система и ее окружение) из взаимодействующих информационных систем , включая и информацию , актуализируемую в этих системах.

Установление отношений и связей, описание их формальными средствами, языками, разработка соответствующих описаниям моделей, методов, алгоритмов, создание и актуализация технологий, поддерживающих эти модели и методы, и составляет основную задачу информатики как науки, образовательной области, сферы человеческой деятельности.

Информатику можно определить как науку, изучающую неизменные сущности (инварианты) информационных процессов, которые протекают в различных предметных областях, в обществе, в познании, в природе.

Другие контрольные работы по предмету Компьютеры, программирование

1. Задание {{ 1 }} 1 Тема 1-0-0

Информатика наиболее полно и точно - это наука, изучающая

ЭВМ и сети ЭВМ

R структуру и свойства информации

программирование

работу с компьютером

Задание {{ 2 }} 2 Тема 1-0-0

Наиболее полно предмет информатики определяется

информационными технологиями и Интернет

R информационными ресурсами и информационными системами

базами данных и системами управления базами данных

программами и программными системами

Задание {{ 3 }} 3 Тема 1-0-0

Информатика - это, в первую очередь,

R междисциплинарная наука

раздел математики

раздел электроники

техническая наука

Задание {{ 4 }} 4 Тема 1-0-0

Информатика имеет три основные ветви

e-mail, ftp, telnet

hardware, software, techware

hardware, software, netware

R brainware, hardware, software

5. Задание {{ 5 }} 5 Тема 1-0-0

Информационные процессы изучались и использовались в обществе с

R древнейших времен

начала 19-го века

с начала 20-го века

с середины 20-го века

Задание {{ 6 }} 6 Тема 1-0-0

Информационный кризис стал наблюдаться в обществе с

начала 19-го века

R конца 19-го века

начала 20-го века

конца 20-го века

Задание {{ 7 }} 7 Тема 1-0-0

В основные функции информатики, как науки и технологии, входит

R разработка методов исследования информационных процессов

R построение технологий применения (актуализации) знаний.

R укрепление междисциплинарных связей.

новое мышление

Задание {{ 8 }} 8 Тема 1-0-0

Термин информатика образован соединением слов

информация и математика

R информация и автоматика

информация и энергетика

информация и электроника

Задание {{ 9 }} 9 Тема 1-0-0

К появлению информатики прямого (непосредственного) отношения не имеет

теория вычислимых функций

теория алгорифмов

разработка электронных ламп

R ядерный синтез

Задание {{ 10 }} 10 Тема 1-0-0

Явление информационный взрыв в обществе характерно

R порядковым, экспоненциальным (в разы) ростом объёма информации

прямо пропорциональным (на столько-то) ростом объема информации

периодическим (синусоидальным) изменением объема информации

обратно пропорциональным изменением по времени объема информации

Тема 2. Информация

Задание {{ 11 }} 11 Тема 2-0-0

Независимо от рассматриваемой предметной области, информация бывает

R входная, выходная, внутренняя

входная, выходная, научная

массовая, личная, закрытая

Задание {{ 12 }} 12 Тема 2-0-0

По отношению к результату исследования системы, информация бывает

исходная, постоянная, результирующая

исходная, внутренняя, выходная

закрытая, открытая, смешанная

R исходная, промежуточная, результирующая

Задание {{ 13 }} 13 Тема 2-0-0

Правильно утверждение:

2,5 Кб = 2500 байт

5000 байт = 5 Кб

R 5120 Кб = 5 Мб

0,1024 Кб = 1 байт

Задание {{ 14 }} 14 Тема 2-0-0

Неправильно утверждение:

2 Кб = 2048 байт

5000 байт < 5 Кб

0,125 Мб = 128 Кб

R 5000 Кб > 5 Мб

Задание {{ 15 }} 15 Тема 2-0-0

Уравнение вида 1 (Килобайт) = 102 х (байт) + 4 (байт) имеет решение:

Задание {{ 16 }} 16 Тема 2-0-0

Информация по изменчивости бывает:

R постоянная, переменная.

постоянная, полная

определенная, неопределенная

структурная, полная

Задание {{ 17 }} 17 Тема 2-0-0

Наибольшее количество свойств информации перечислено в списке

полнота, массовость, статичность

R полнота, массовость, достоверность

реальность, ценность, краткость

полнота, адекватность, закрытость

Задание {{ 18 }} 18 Тема 2-0-0

Правильно утверждение:

25 Мб = 2500000 байт

5024 байт = 5 Кб

0,25 Кбайт = 246 байт

R 2 Кб = 2048 байт

Задание {{ 19 }} 19 Тема 2-0-0

Неправильно утверждение:

2 Кб > 2000 байт

5000 байт < 5,5 Кб

2048 байт > 10000 бит

R 1,5 Кб > 0,2 Мб

Задание {{ 20 }} 20 Тема 2-0-0

Уравнение вида 2 (Мегабайт) = 10 х (байт)+ 48 (байт) имеет решение:

Задание {{ 21 }} 21 Тема 2-0-0

В 5 килобайтах:

Задание {{ 22 }} 22 Тема 2-0-0

В 5 Мегабайтах килобайт:

Задание {{ 23 }} 23 Тема 2-0-0

В 4 Килобайтах всего бит:

Задание {{ 24 }} 24 Тема 2-0-0

В 1 Гигабайте:

148576 Мегабайт

1024 Килобайт

R 1048576 Килобайт

3251234230 бит.

Задание {{ 25 }} 25 Тема 2-0-0

Сообщения в 32**(x+5) Килобайт и 256**x Мегабайт будут равны лишь при x равном:

Задание {{ 26 }} 26 Тема 2-0-0

В списке равенств: 1 байт = 8 битов; 1 К = 2**13 бит; 1 М = 2**23 байт; 1 Г = 2**30 байт; 1 Г = 2**20 М; 1 К = 2**10 байт; М= 2**50 бит тождеств всего:

Задание {{ 27 }} 27 Тема 2-0-0

R 2 Гигабайт = 2000000 Килобайт

5 Килобайт > 5000 байт

100 Мегабайт < 0,1 Гигабайт

56 бит > 6 байт

Задание {{ 28 }} 28 Тема 2-0-0

Уравнение 1 Килобайт = 102х (байт) + 4 (байта) имеет решение

Задание {{ 29 }} 29 Тема 2-0-0

Информация обладает свойством

R полноты

абсолютности

всеобщности

статичности

Задание {{ 30 }} 30 Тема 2-0-0

Гигабайт меньше, чем

10000 Мегабайт

1000000 Килобайт

R 10000000000 байт

8000000000 бит

Задание {{ 31 }} 31 Тема 2-0-0

Сообщение в 128**(x-3) Килобайт равно сообщению в 64**x Гигабайт только при x равном:

Задание {{ 32 }} 32 Тема 2-0-0

К эмпирическим методам не относится метод:

R индукции

измерения

cравнения

наблюдения

Задание {{ 33 }} 33 Тема 2-0-0

Независимо от предметной области, информация бывает:

R входная, выходная, внутренняя (внутрисистемная)

входная - выходная, сетевая, научная

научно - техническая, бытовая, результирующая

входная, выходная, результирующая

Задание {{ 34 }} 34 Тема 2-0-0

К теоретическим методам не относится метод:

формализации

аксиоматизации

идеализации

R анализа

Задание {{ 35 }} 35 Тема 2-0-0

К теоретическим методам относится метод:

R формализации.

дедукции.

Задание {{ 36 }} 36 Тема 2-0-0

По отношению к результату, информация бывает:

исходная, постоянная, результирующая.

исходная, переменная, результирующая.

исходная, внутренняя, выходная.

R исходная, промежуточная, результирующая.

Задание {{ 37 }} 37 Тема 2-0-0

По изменчивости информация бывает:

R постоянная, переменная, постоянно-переменная (смешанная).

постоянная, переменная, полная.

постоянная, переменная, динамическая.

постоянная, структурная, полная.

Задание {{ 38 }} 38 Тема 2-0-0

К эмпирическим методам относится метод:

индукция.

R измерение.

эвристический.

абстрагирование.

Задание {{ 39 }} 39 Тема 2-0-0

R семантичность, массовость, открытость.

достоверность, устойчивость, ценность.

полнота, сжимаемость, закрытость.

полнота, массовость, ценность.

Задание {{ 40 }} 40 Тема 2-0-0

Наименьшее количество свойств информации перечислено в списке:

полнота, семантичность, открытость, массовость, относительность;

полнота, массовость, достоверность, устойчивость, ценность;

R свежесть, закрытость, модульность, стоимость, адекват