Прибор для измерения сопротивления участка электрической цепи. Измерение электрического сопротивления постоянному току

Как это работает? 

Выбор метода измерений зависит от ожидаемого значения измеряемого сопротивления и требуемой точности . Основными методами измерения сопротивлений постоянному току являются косвенный, метод непосредственной оценки и мостовой.

Рисунок 1. Схемы пробников для измерения больших (а) и малых (б) сопротивлений

Рисунок 2. Схемы измерения больших (а) и малых (б) сопротивлений методом амперметра - вольтметра В основных схемах косвенного метода применяют измерители напряжения и тока.

На рисунке 1, а представлена схема, пригодная для измерения сопротивлений одного порядка со входным сопротивлением Rв вольтметра Rн. Измерив при короткозамкнутом Rx напряжение U0, сопротивление Rх определяют по формуле Rx = Rи(U0/Ux-1).

При измерении по схеме рис. 5.1, б резисторы большого сопротивления включают последовательно с измерителем, а малого - параллельно.

Для первого случая Rx = (Rи + Rд)(Iи/Ix-1), где Iи - ток через измеритель при короткозамкнутом Rx; для второго случая

где Iи - ток через измеритель при отсутствии Rх, Rд - добавочный резистор.

Более универсален метод амперметра - вольтметра, позволяющий измерять сопротивления при определенных режимах их работы, что важно при измерении нелинейных сопротивлений (см. рис. 2).

Для схемы рис. 2, а

Для схемы рис. 2, б

Относительная методическая погрешность измерения:

Ra и Rв - сопротивления амперметра и вольтметра.

Рис. 3. Схемы омметров с последовательной (а) и параллельной (б) схемами измерения

Рис. 4. Мостовые схемы измерения сопротивлений: а - одинарный мост, б - двойной.

Из выражений для относительной погрешности видно, что схема на рис. 2, а обеспечивает меньшую погрешность при измерении больших сопротивлений, а схема на рис. 2, б - при измерении малых.

Погрешность измерения по методу амперметра-вольтметра рассчитывается по формуле

где gв, gа - классы точности вольтметра и амперметра; Uп, Iп - пределы измерений вольтметра и амперметра.

Непосредственное измерение сопротивлений постоянному току выполняется омметрами. Если значения сопротивлений более 1 Ом, применяют омметры с последовательной схемой измерения, а для измерения малых сопротивлений - с параллельной схемой. При пользовании омметром с целью компенсации изменения напряжения питания необходимо произвести установку стрелки прибора. Для последовательной схемы стрелка устанавливается на нуль при шунтированном измеряемом сопротивлений. (Шунтирование производится, как правило, специально предусмотренной в приборе кнопкой). Для параллельной схемы перед началом измерения стрелку устанавливают на отметку "бесконечность".

Чтобы охватить диапазон малых и больших сопротивлений, строят омметры по параллельно-последовательной схеме . В этом случае имеются две шкалы отсчета Rх.

Наиболее высокая точность может быть достигнута при использовании мостового метода измерения. Средние сопротивления (10 Ом - 1 МОм) измеряют с помощью одинарного моста, а малые - с помощью двойного.

Измеряемое сопротивление Rx включают в одно из плеч моста, диагонали которого подключают соответственно к источнику питания и нуль-индикатору; в качестве последнего могут быть использованы гальвано-метр, микроамперметр с нулем посередине шкалы и др.

Рис 5. Схемы измерения больших (а) и малых (б) сопротивлений переменному току

Условие равновесия обоих мостов определяется выражением

Плечи R1 и R3 обычно выполняют в виде магазинов сопротивлений (магазинный мост ). С помощью R3 устанавливают ряд значений отношений R3/R2, обычно кратных 10, а с помощью R1 уравновешивают мост. Отсчет измеряемого сопротивления производится по значению, установленному ручками магазинов сопротивлений. Уравновешивание моста может также производиться плавным изменением отношения резисторов R3/R2, выполненных в виде реохорда, при определенном значении R1 (линейный мост).

Для многократных измерений степени соответствия сопротивлений некоторому заданному значению Rн применяют неуравновешенные мосты . Они уравновешиваются при Rx=Rн. По шкале индикатора можно определить отклонение Rх от Rн в процентах.

На принципе самоуравновешивания работают автоматические мосты . Напряжение, возникающее при разбалансе на концах диагонали моста, после усиления воздействует на электродвигатель, перемешивающий движок реохорда. При уравновешивании моста движок останавливается, а положение реохорда определяет значение измеряемого сопротивления .

Измерение методом амперметра и вольтметра. Сопротивление какой-либо электрической установки или участка электрической цепи можно определить с помощью амперметра и вольтметра, пользуясь законом Ома. При включении приборов по схеме рис. 339, а через амперметр проходит не только измеряемый ток I x , но и ток I v , протекающий через вольтметр. Поэтому сопротивление

R x = U / (I – U/R v ) (110)

где R v - сопротивление вольтметра.

При включении приборов по схеме рис. 339, б вольтметр будет измерять не только падение напряжения Ux на определенном сопротивлении, но и падение напряжения в обмотке амперметра U A = IR А. Поэтому

R x = U/I – R А (111)

где R А - сопротивление амперметра.

В тех случаях, когда сопротивления приборов неизвестны и, следовательно, не могут быть учтены, нужно при измерении малых сопротивлений пользоваться схемой рис. 339,а, а при измерении больших сопротивлений - схемой рис. 339, б. При этом погрешность измерений, определяемая в первой схеме током I v , а во второй - падением напряжения UА, будет невелика по сравнению с током I x и напряжением U x .

Измерение сопротивлений электрическими мостами. Мостовая схема (рис. 340,а) состоит из источника питания, чувствительного прибора (гальванометра Г) и четырех резисторов, включаемых в плечи моста: с неизвестным сопротивлением R x (R4) и известными сопротивлениями R1, R2, R3, которые могут при измерениях изменяться. Прибор включают в одну из диагоналей моста (измерительную), а источник питания - в другую (питающую).

Сопротивления R1 R2 и R3 можно подобрать такими, что при замыкании контакта В показания прибора будут равны нулю (в та-

ком случае принято говорить, что мост уравновешен). При этом неизвестное сопротивление

R x = (R 1 /R 2)R 3 (112)

В некоторых мостах отношение плеч R1/R2 установлено постоянным, а равновесие моста достигается только подбором сопротивления R3. В других, наоборот, сопротивление R3 постоянно, а равновесие достигается подбором сопротивлений R1 и R2.

Измерение сопротивления мостом постоянного тока осуществляется следующим образом. К зажимам 1 и 2 присоединяют неизвестное сопротивление R x (например, обмотку электрической машины или аппарата), к зажимам 3 и 4 - гальванометр, а к зажимам 5 и 6 - источник питания (сухой гальванический элемент или аккумулятор). Затем, изменяя сопротивления R1, R2 и R3 (в качестве которых используют магазины сопротивлений, переключаемые соответствующими контактами), добиваются равновесия моста, которое определяется по нулевому показанию гальванометра (при замкнутом контакте В).

Существуют различные конструкции мостов постоянного тока, при использовании которых не требуется выполнять вычисления, так как неизвестное сопротивление R x отсчитывают по шкале прибора. Смонтированные в них магазины сопротивлений позволяют измерять сопротивления от 10 до 100 000 Ом.

При измерении малых сопротивлений обычными мостами сопротивления соединительных проводов и контактных соединений вносят большие погрешности в результаты измерения. Для их устранения применяют двойные мосты постоянного тока (рис. 340,б). В этих мостах провода, соединяющие резистор с измеряемым сопротивлением R x и некоторый образцовый резистор с сопротивлением R0 с другими резисторами моста, и их контактные соединения оказываются включенными последовательно с резисторами соответствующих плеч, сопротивление которых устанавливается не менее 10 Ом. Поэтому они практически не влияют на результаты измерений. Провода же, соединяющие резисторы с сопротивлениями R x и R0, входят в цепь питания и не влияют на условия равновесия моста. Поэтому точность измерения малых сопротивлений довольно высокая. Мост выполняют так, чтобы при регулировках его соблюдались следующие условия: R1 = R2 и R3 = R4. В этом случае

R x = R 0 R 1 /R 4 (113)

Двойные мосты позволяют измерить сопротивления от 10 до 0,000001 Ом.

Если мост не уравновешен, то стрелка в гальванометре будет отклоняться от нулевого положения, так как ток измерительной диагонали при неизменных значениях сопротивлений R1, R2, R3 и э. д. с. источника тока будет зависеть только от изменения сопротивления R x . Это позволяет проградуировать шкалу гальванометра в единицах сопротивления R x или каких-либо других единицах (температура, давление и пр.), от которых зависит это сопротивление. Поэтому неуравновешенный мост постоянного тока широко используют в различных устройствах для измерения неэлектрических величин электрическими методами.

Применяют также различные мосты переменного тока, которые дают возможность измерить с большой точностью индуктивности и емкости.

Измерение омметром. Омметр представляет собой миллиамперметр 1 с магнитоэлектрическим измерительным механизмом и включается последовательно с измеряемым сопротивлением R x (рис. 341) и добавочным резистором R Д в цепь постоянного тока. При неизменных э. д. с. источника и сопротивления резистора R Д ток в цепи зависит только от сопротивления R x . Это позволяет отградуировать шкалу прибора непосредственно в омах. Если выходные зажимы прибора 2 и 3 замкнуты накоротко (см. штриховую линию), то ток I в цепи максимален и стрелка прибора отклоняется вправо на наибольший угол; на шкале этому соответствует сопротивление, равное нулю. Если цепь прибора разомкнута, то I = 0 и стрелка находится в начале шкалы; этому положению соответствует сопротивление, равное бесконечности.

Питание прибора осуществляется от сухого гальванического элемента 4, который устанавливается в корпусе прибора. Прибор будет давать правильные показания только в том случае, если источник тока имеет неизменную э. д. с. (такую же, как и при градуировке шкалы прибора). В некоторых омметрах имеются два или несколько пределов измерения, например от 0 до 100 Ом и от 0 до 10 000 Ом. В зависимости от этого резистор с измеряемым сопротивлением R x подключают к различным зажимам.

Измерение больших сопротивлений мегаомметрами. Для измерения сопротивления изоляции чаще всего применяют мегаомметры магнитоэлектрической системы. В качестве измерительного механизма в них использован логометр 2 (рис. 342), показания кото-

рого не зависят от напряжения источника тока, питающего измерительные цепи. Катушки 1 и 3 прибора находятся в магнитном поле постоянного магнита и подключены к общему источнику питания 4.

Последовательно с одной катушкой включают добавочный резистор R д, в цепь другой катушки - резистор сопротивлением R x .

В качестве источника тока обычно используют небольшой генератор 4 постоянного тока, называемый индуктором; якорь генератора приводят во вращение рукояткой, соединенной с ним через редуктор. Индукторы имеют значительные напряжения от 250 до 2500 В, благодаря чему мегаомметром можно измерять большие сопротивления.

При взаимодействии протекающих по катушкам токов I1 и I2 с магнитным полем постоянного магнита создаются два противоположно направленных момента М1 и М2, под влиянием которых подвижная часть прибора и стрелка будут занимать определенное положение. Как было показано в § 100, положение подвижной

части логометра зависит от отношения I1/I2. Следовательно, при изменении R x будет изменяться угол? отклонения стрелки. Шкала мегаомметра градуируется непосредственно в килоомах или мегаомах (рис. 343, а).

Чтобы измерить сопротивление изоляции между проводами, необходимо отключить их от источника тока (от сети) и присоединить один провод к зажиму Л (линия) (рис. 343,б), а другой - к зажиму 3 (земля). Затем, вращая рукоятку индуктора 1 мегаомметра, определяют по шкале логометра 2 сопротивление изоляции. Имеющийся в приборе переключатель 3 позволяет изменять пределы измерения. Напряжение индуктора, а следовательно, частота вращения его рукоятки теоретически не оказывают влияние на результаты измерений, но практически рекомендуется вращать ее более или менее равномерно.

При измерении сопротивления изоляции между обмотками электрической машины отсоединяют их друг от друга и соединяют одну из них с зажимом Л, а другую с зажимом 3, после чего, вращая рукоятку индуктора, определяют сопротивление изоляции. При измерении сопротивления изоляции обмотки относительно корпуса его соединяют с зажимом 3, а обмотку - с зажимом Л.

В радиолюбительской практике иногда требуется измерить малые сопротивления значение которых ниже 1 Ом, например, в случае проверки обмоток трансформаторов на короткое замыкание, контактов реле, различных шунтов,. Как же осуществить измерение малых сопротивлений величиной в милиомы или микроомы? Как известно из курса электротехники, измерение сопротивлений основано на эффекте преобразовании их величины в ток или напряжение. На этом принципе и основывается схема приставки к мультиметру.

Эта простая схема используется при измерении малых значений сопротивления - от 0,001 до 1.999 ом. Нам потребуется отдельный аккумулятор для питания радиолюбительской конструкции. Напряжение питания стабилизируется ИМС LM317LZ. Подстроечное сопротивление необходимо точно настроить на ток 100 мА, чтобы обеспечить высокую точность и малую погрешность.

Печатная плата показана на рисунке ниже и ее проще всего сделать по . При сборке конструкции постарайтесь сократить длину монтажных проводов до минимума.

На экран стандартного цифрового мультиметра D830 будет выведено значение в Омах, от 0,001 до 1.999 Ом. Для проверки прибора определите номинал несколько параллельно соединённых одноомных сопротивлений.

Если хотите, то можете спаять не просто приставку, а полностью готовый самостоятельный прибор. В этом аналоговом милиомметре применяются два режима определения сопротивления. При стабильном токе в 1А шкала 1 деление = 0,002 Ом и при стабильном токе 0,1А шкала 1 деление = 0,02 Ом. При токе в 0,1А прибор сможет определить сопротивление от 0,02 Ома до одного Ома.


Принцип работы устройства основан в определении падения напряжения на измеряемом сопротивлении при прохождении через него заданного стабильного тока. Сопротивление рамки у стрелочного измерительного устройства 1200 Ом, ток полного отклонения равен 0,0001 А, значит, если мы применим этот индикатор в роли вольтметра, необходимо подать на него напряжение U = IхR = 0,0001х1200 = 0,12 В = 120 мВ для отклонения стрелки на последнее деление шкалы. Именно это напряжение должно упасть на сопротивлении в 1 Ом на пределе измерения прибора от 0,02 Ома до 1 Ома. Значит на этом пределе нам требуется пропустить через измеряемый резистор стабильный ток I = U/R = 0,12/1 = 0,12A = 120 мА. По аналогии рассчитываем предел и для других значений.

Принцип работы этой схемы основывается на методе измерении падения напряжения на измеряемом сопротивлении при заранее известном значении тока протекающего через него. На транзисторе VT1 создает постоянное значение тока, а его стабильность поддерживает операционный усилитель, который осуществляет управление VT1.


номинал постоянного тока в момент измерения сопротивлений до 20 Ом -10 мА и 100 мА при измерении до 2 Ом. Для стабильной работы приставки, микросхема DA1, запитана от стабилизатора напряжения 78L05. Тумблером SA1 осуществляется выбор предела измерений. Кнопку SA3 нажимаем только в момент измерений. Для защиты вольтметра в схему добавлен диод VD1.

Настройка конструкции

Сперва ручки переменных сопротивлений R2 и R5 устанавливаем в средние положения. затем на конструкцию подают напряжение 8-24 В. Постоянную величину тока, протекающего через замеряемое сопротивление, задаем следующим методом. Необходимо щупы точного амперметра подключить к зажимам измеряемого сопротивления. Переключатель SA1 поставить в положение замера сопротивлений до 2 Ом, затем нажимаем на SA3 и путем изменения переменного сопротивления R5 выставляем ток 100 мА. Далее SA1 установить в положение до 20 Ом, нажимаем SA3 уже R2 настраивают ток 10 мА. Повторяют это способ калибровки тока несколько раз, а затем движки переменных сопротивлений покрыть лаком или краской.

ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЯ ПОСТОЯННОМУ ТОКУ

Основными методами измерения сопротивления постоянному току являются: косвенный метод; метод непосредственной оценки и мостовой метод.
Выбор метода измерений зависит от ожидаемого значения измеряемого сопротивления и требуемой точности.
Наиболее универсальным из косвенных методов является метод амперметра-вольтметра.
Метод амперметра-вольтметра. Основан на измерении тока, протекающего через измеряемое сопротивление и падения напряжения на нем. Применяют две схемы измерения: измерение больших сопротивлений (рис. 1.9,а) и измерение малых сопротивлений (рис. 1.9,б). По результатам измерения тока и напряжения определяют искомое сопротивление.
Для схемы рис. 1.9,а искомое сопротивление и относительная методическая погрешность измерения определяются

Где Rx - измеряемое сопротивление; Rа - сопротивление амперметра.
Для схемы рис. 1.9,6 искомое сопротивление и относительная методическая погрешность измерения определяются

где Rв -сопротивление вольтметра.
Из определения относительных методических погрешностей следует, что измерение по схеме рис. 1.9,а обеспечивает меньшую погрешность при измерении больших сопротивлений, а измерение по схеме рис. 1.9,6 - при измерении малых сопротивлений.
Погрешность измерения по данному методу рассчитывается по выражению

где γ в, γ a , - классы точности вольтметра и амперметра;
U п, I п пределы измерения вольтметра и амперметра.
Используемые при измерении приборы должны иметь класс точности не более 0,2. Вольтметр подключают непосредственно к измеряемому сопротивлению. Ток при измерении должен быть таким, чтобы показания отсчитывались по второй половине шкалы. В соответствии с этим выбирается и шунт, применяемый для возможности измерения тока прибором класса 0,2. Во избежании нагрева сопротивления и, соответственно, снижения точности измерений, ток в схеме измерения не должен превышать 20% номинального.


Рис. 1.9. Схема измерения больших (а) и малых (б) сопротивлений методом амперметра-вольтметра.
Рекомендуется проводить 3 - 5 измерений при различных значениях тока. За результат, в данном случае, принимается среднее значение измеренных сопротивлений.
При измерениях сопротивления в цепях, обладающих большой индуктивностью, вольтметр следует подключать после того как ток в цепи установится, а отключать до разрыва цепи тока. Это необходимо делать для того, чтобы исключить возможность повреждения вольтметра от ЭДС самоиндукции цепи измерения.

измерение сопротивления проводников присоединения к земле и выравнивания потенциалов (металлосвязь) (2p);
измерение сопротивления заземляющих устройств по трёхполюсной схеме (3p);
измерение сопротивления заземляющих устройств по четырехполюсной схеме (4p);
измерение сопротивления многократных заземляющих устройств без разрыва цепи заземлителей (с применением токоизмерительных клещей);
измерение сопротивления заземляющих устройств методом двух клещей;
измерение сопротивления молниезащит (громоотводов) по четырехполюсной схеме импульсным методом;
измерение переменного тока (ток утечки);
измерение удельного сопротивления грунта методом Веннера с возможностью выбора расстояния между измерительными электродами; высокая помехоустойчивость;

Метод непосредственной оценки. Предполагает измерение сопротивления постоянному току с помощью омметра. Измерения омметром дают существенные неточности. По этой причине данный метод используют для приближенных предварительных измерений сопротивлений и для проверки цепей коммутации. На практике применяют омметры типа М57Д, М4125, Ф410 и др. Диапазон измеряемых сопротивлений данных приборов лежит в пределах от 0,1 Ом до 1000 кОм.
Для измерения малых сопротивлений, например сопротивление паек якорных обмоток машин постоянного тока, применяют микроомметры типа М246. Это приборы логометрического типа с оптическим указателем, снабженные специальными самозачищающими щупами.
Также для измерения малых сопротивлений, например переходных сопротивлений контактов выключателей, нашли применение контактомеры. Контактомеры Мосэнерго имеют пределы измерения 0 - 50000 мкОм с погрешностью менее 1,5%. Контактомеры КМС-68, КМС-63 позволяют производить измерения в пределах 500-2500 мкОм с погрешностью менее 5%.
Для измерения сопротивления обмоток силовых трансформаторов, генераторов с достаточно большой точностью применяют потенциометры постоянного тока типа ПП-63, КП-59. Данные приборы используют принцип компенсационного измерения, т. е. падение напряжения на измеряемом сопротивлении уравновешивается известным падением напряжения.

Мостовой метод. Применяют две схемы измерения - схема одинарного моста и схема двойного моста. Соответствующие схемы измерения представлены на рис. 1.10.
Для измерения сопротивлений в диапазоне от 1 Ом до 1 МОм применяют одинарные мосты постоянного тока типа ММВ, Р333, МО-62 и др. Погрешность измерений данными мостами достигает 15% (мост ММВ). В одинарных мостах результат измерения учитывает сопротивление соединительных проводов между мостом и измеряемым сопротивлением. Поэтому сопротивления меньше 1 Ом такими мостами измерить нельзя из-за существенной погрешности. Исключение составляет мост P333, с помощью которого можно производить измерение больших сопротивлений по двухзажимной схеме и малых сопротивлений (до 5 10 Ом) по четырехзажимной схеме. В последней почти исключается влияние сопротивления соединительных проводов, т. к. два из них входят в цепь гальванометра, а два других - в цепь сопротивления плеч моста, имеющих сравнительно большие сопротивления.


Рис. 1.10. Схемы измерительных мостов.
а - одинарного моста; б - двойного моста.
Плечи одинарных мостов выполняют из магазинов сопротивлений, а в ряде случаев (например, мост ММВ) плечи R2, R3 могут быть выполнены из калиброванной проволоки (реохорда), по которой перемещается движок, соединенный с гальванометром. Условие равновесия моста определяется выражением Rх = R3 (R1/R2). С помощью R1 устанавливают отношение R1/R2, обычно кратное 10, а с помощью R3 уравновешивают мост. В мостах с реохордом уравновешивания достигается плавным изменением отношения R3/R2 при фиксированных значениях R1.
В двойных мостах сопротивления соединительных проводов при измерениях неучитываются, что представляет возможность измерять сопротивления до 10-6 Ом. На практике применяют одинарно-двойные мосты типа P329, P3009, МОД-61 и др. с диапазоном измерений от 10-8 Ом до 104 МОм с погрешностью измерения 0,01 - 2%.
В этих мостах равновесие достигается изменением сопротивлений R1, R2, R3 и R4. При этом достигается равенства R1 = R3 и R2 = R4. Условие равновесия моста определяется выражением Rх= RN (R1/R2). Здесь сопротивление RN - образцовое сопротивление, составная часть моста. К измеряемому сопротивлению Rх подсоединяют четыре провода: провод 2 - продолжение цепи питания моста, его сопротивление не отражается на точности измерений; провода 3 и 4 включены последовательно с сопротивлениями R1 и R2 величиной больше 10 Ом, так что их влияние ограничено; провод 1 является составной частью моста и его следует выбирать как можно короче и толще.
При измерениях сопротивления в цепях, обладающих большой индуктивностью, во избежание ошибок и для предотвращения повреждений гальванометра необходимо производить измерения при установившемся токе, а отключение - до разрыва цепи тока.
Измерение сопротивления постоянному току независимо от метода измерения производят при установившемся тепловом режиме, при котором температура окружающей среды отличается от температуры измеряемого объекта не более чем на ±3°С. Для перевода измеренного сопротивления к другой температуре (например, с целью сравнения, к 15°С) применяют формулы пересчета.

На методе амперметра-вольтметра основаны измерения приборами СОНЭЛ. Измерение больших сопротивлений - это измерители сопротивления электроизоляции серии MIC , малых сопротивлений - это микроомметры MMR-600, MMR-610 и др.. Измерители MMR оснащены источниками стабилизированого тока, аналогово-цифровыми преобразователями, токовыми и потенциальными разъемами подключения, переключателем направления тока для исключения погрешностей измерения в случаях с термо-ЭДС, управление от микроконтроллера, цифровая индикация результатов, связь с компьютером.
Погрешность измерения - 0,25 % с разрешением от 0,1 мкОм (MMR-610).

Недавно понадобилось оценить сопротивление изоляции электрического кабеля. Но так как ни мегомметра, ни тем более высоковольтной «пробойной» установки под руками не было, то пришлось «изобретать» то, чем можно измерить сопротивления, близкие к единицам и десяткам ГОм. В итоге оказалось, что всё достаточно просто – на сборку схемы и проверку изоляции ушло не более часа, а потом ещё несколько дней на то, чтобы экспериментальный макет самодельного мегомметра доработать для удобства пользования и оформить в корпус.

Сначала немного исходной теории.

Для электронного измерения больших сопротивлений довольно часто применяется схема, содержащая в себе источник постоянного напряжения и резисторный делитель из неизвестного и известного сопротивлений, к выходу которого подключен усилитель постоянного тока (рис.1 ) .

Если считать, что усилитель не оказывает никакого влияния на делитель, то напряжение «Uвх» будет находиться в зависимости от отношения сопротивлений резисторов и соответствовать формуле R1/(Rx+R1). В полученный результат называется коэффициентом преобразования «S», но радиолюбителям более привычно понятие коэффициента деления «N», который равен 1/S.

Для понимания физического смысла формул представим, что сопротивления резисторов равны и тогда сразу ясно, что напряжения на резисторах распределятся в одинаковых пропорциях и «Uвх» будет равно половине «Uист». Проверим это, взяв номиналы сопротивлений в 9100 Ом и подставив их в формулу:

S = 9100/(9100+9100) = 0,5;
N = 1/0,5 = 2.

Да, всё верно – получился коэффициент деления 2.

Теперь немного усложним – возьмём резистор Rx равный 9000 Ом, а R1 1000 Ом:

S = 1000/(9000+1000) = 0,1;
N = 1/0,1 = 10.

Получается коэффициент деления 10.

Если же взять резисторы 10 кОм и 1 кОм (или, допустим, 9,1 кОм и 910 Ом), то получится делитель напряжения в 11 раз. Это достаточно удобно – взяв номиналы резисторов кратные целому числу «х», получим коэффициент деления равный х+1 и по формулам можно не считать.

Теперь нужно оценить, в каких границах может находиться измеряемое сопротивление Rx. По схеме, указанной на рисунке 1 , понятно, что напряжение, подаваемое на вход усилителя не должно превышать его напряжения питания, т.е. значение минимального измеряемого сопротивления Rx зависит от потенциала «Uист» и номинала R1.

Возьмём теоретический вариант, когда значение R1 равно 1 кОм, а «Uист» равно одному из напряжений питания усилителя – допустим, что это +15 В. Тогда понятно, что максимальное «Uвых» получается при Rx=0. Минимальное же, т.е. такое, которое будет регистрироваться вольтметром (допустим, что это 1 мВ), получится при коэффициенте деления N=15000 (это результат деления 15 В на 1 мВ) и, соответственно, при Rx=14998,999 кОм (или 14,999 МОм).

Чтобы измерять ещё бОльшие сопротивления, нужно увеличивать R1 – например, при его значении в 10 МОм, верхний порог измерений приближается к 150 ГОм. Это, конечно, цифра теоретическая, так как не всегда удаётся выполнить входные цепи усилителя так, чтобы они не оказывали шунтирующего влияния на R1. Но здесь можно пойти по другому пути – поставить R1 сопротивлением 1…3 МОм и увеличить напряжение «Uист» в несколько раз. Правда, в этом варианте появляется ограничение по минимальному измеряемому сопротивлению, так как появляется возможность превышения разрешённого уровня «Uвх», но это тоже решаемо (будет показано ниже).

Итак, если взять источник с напряжением 40 В и поставить R1=2,2 МОм, то учитывая минимальную чувствительность шкалы измерителя в 1 мВ, получается, что максимально возможное измеряемое сопротивление будет находиться где-то в районе 90-100 ГОм, чего в принципе, достаточно для большинства радиолюбительских задач. Нижний порог измерений, при котором на вход усилителя будет поступать 12 В, будет около 5 МОм.

Теперь, зная основные условия, можно переходить к практическому конструированию.

Один из вариантов схемы показан на рисунке 2 . На диодах VD1…VD4 и конденсаторах С3С4 собран двуполярный выпрямитель, а на С5, С6, С8, С9, С12, С13 и микросхемах VR1 и VR2 – стабилизаторы напряжений +/- 15 В для питания операционных усилителей. Их в измерительной части схемы установлено два. Первый (OP1) – это неинвертирующий буферный повторитель с коэффициентом усиления 1, имеющий в таком включении входное сопротивление более 1 ТОм и этим минимально влияя на известное сопротивление резистора R7 измерительного делителя. Элементы R10 и С10 являются фильтром НЧ и ослабляют помехи, наводимые на проводники в высокоомной цепи. Резистор R13 служит для балансировки дифференциального каскада OP1 и, в конечном итоге, обеспечивает установку нулевого напряжения на выходе всей схемы при отсутствии «Uвх».

Так как измеритель предполагалось использоваться со стрелочным магнитоэлектрическим прибором, то для удобства пользования в схему был добавлен ещё один каскад на OP2 с возможностью выбора коэффициента усиления в 1 или в 101 раз. В таком варианте при разомкнутых контактах S2 возможно проводить более-менее достоверный контроль Rx в пределах от 1 МОм до 1 ГОм (при этом «Uвых» ОР2 меняется примерно от 10 В до 0,1 В). А при замкнутых контактах S2 можно оценивать сопротивления от 1 ГОм до 100 ГОм (естественно, при тех же границах изменения «Uвых»).

Минимальное требуемое «Uвых» ОР2 зависит от применяемого стрелочного прибора. Если, допустим, у него чувствительность 100 мкА и он имеет 100 делений на шкале, то тогда стрелка отклонится на отметку «100» при напряжении на выходе ОР2 равном 10 В при сопротивлении R11 равном 100 кОм (10 В / 100 кОм = 100 мкА). А так как минимальное показание в одно деление шкалы будет при «Uвых» равном 0,1 В, то исходя из этого и выбирается коэффициент усиления каскада на ОР2.

Источник стабилизированного напряжения +43 В питается от обмотки трансформатора Tr1. Переменное напряжением 44-45 В выпрямляется диодным мостом VD5…VD8, пульсации сглаживаются конденсатором С1 (конструктивно их там два – по 220 мкФ на 100 В). Стабилизация выходного напряжения +43 В обеспечивается цепочкой последовательно установленных стабилитронов VD9 и VD10. Резистор R3 – токоограничительный, рассчитан на протекающий ток около 3,8…4 мА.

В выходной цепи источника установлен резистор 5,1 МОм. Сделано это для того, чтобы ограничить «Uвх» до безопасного уровня при случайном замыкании измерительных выводов или при измерении малых сопротивлений. Этим, конечно, ограничивается точность измерения в, так сказать, «низкоомном диапазоне», но защищает микросхему ОР1 от выхода из строя. Также следует учитывать, что из-за установки этого резистора сильно изменяется линейность измерения в «нижнем» участке шкалы «1 МОм … 1 ГОм» и поэтому перед градуировкой шкал следует проводить калибровочную оценку.

Цепи R1C2 и R8C11 - дополнительные ФНЧ и при Rx равном 1 ГОм подавление частоты 50 Гц составляет более 60 dB (рис.3 ) (расчет теоретический и относится к помехам, появляющимся на левом выводе Rx, файл для программы находится в приложении к тексту).

Диоды VD11 и VD12 – защищают прибор РА1 от больших напряжений во время подстройки сопротивления резистора R11 или в случае его выхода из строя.

Конструктивно вся электронная схема, за исключением сетевого выключателя S1, предохранителя FU1, резистора R11 и диодов VD11 и VD12, выполнена на одной печатной плате размером 70х75 мм (файл для в приложении, вид со стороны печати, поэтому рисунок при надо «зеркалить»). Резистор и диоды крепятся непосредственно к лепесткам прибора РА1, а выключатель и предохранительная колодка – на задней стенке корпуса.

Все применённые детали – обыкновенные, «выводные».

После проверки и настройки (рис.4 ), трансформатор, плата и вся коммутация были установлены в корпус от переговорного устройства УДП (рис.5 ).

Настройку схемы лучше проводить поэтапно, начиная со стабилизаторов +/- 15 В. После установки всех деталей на печатную плату и проверки правильности монтажа, нужно отпаять перемычки, по которым подаются напряжения питания к ОР1 и ОР2 (красно-оранжевые на рис.6 ).

После этого на вход выпрямительного моста следует подать напряжение с 15-ти вольтовых обмоток трансформатора Tr1 и проверить выходное напряжение на конденсаторах С12 и С13. Хорошо бы также проверить напряжение пульсаций 100 Гц на входах VR1 и VR2 – оно должно быть менее 0,2 В.

Затем так же подать на плату напряжение ~44 В, проверить работу стабилизатора +43 В и при необходимости подобрать напряжение стабилизации (42-44 В).

После этого можно восстановить перемычки и проверить работоспособность операционных усилителей ОР1 и ОР2. При отсутствии резистора Rx и при замкнутых контактах переключателя S2 на выходе ОР2 должно быть напряжение, близкое к нулю и должно меняться при вращении движка переменного резистора R12.

Теперь следует проверить правильность работы измерительного делителя и электронной схемы. Для этого следует к выводам R9 и C11 подключить цифровой вольтметр, разомкнуть контакты S2, а к измерительному разъёму «Rx» подключит два резистора по 5,1 МОм, включенных последовательно (суммарное сопротивление – 10,2 МОм). При включении прибора, вольтметр должен показать напряжение, близкое к 5,2…5,21 В.

Проверку работоспособности при измерении больших сопротивлений и калибровку шкал индикатора можно провести, имитируя падение напряжения на резисторе Rx, т.е. подавая напряжение «Uвх» с регулируемого источника напряжения или с низкоомного регулируемого делителя (рис.7 ), подключенного к шине питания +15 В. Вариант «а» – при использовании цифрового вольтметра с точность показаний до 1 мВ, вариант «б» - при более грубом вольтметре, но с делением выходного напряжения ещё в 10 раз, что позволит получить нужную точность.

Расчет выставляемых напряжений можно провести по вышеприведённым формулам или воспользоваться программой и посчитать в ней.

При поиске комплектующих и замене деталей на другие, следует учитывать, что на входе операционного усилителя ОР1 должны стоять полевые транзисторы и он должен иметь выводы для коррекции нуля (возможная замена – на К544УД2 или К140УД8, но у последнего нумерация выводов другая).

Конденсатор С10 должен быть с высоким сопротивлением изоляции и низким током утечки (кстати, можно этим же измерителем проверять утечку конденсаторов, подключив их к разъёму «Rx»).

Остальные детали не критичны – главное, чтобы по размерам подошли. Выпрямительные диоды – любые на ток от 1 А и выше, стабилизаторы напряжений можно поставить слаботочные (78L15 и 79L15). Электролитические конденсаторы должны быть рассчитаны на работу с соответствующими напряжениями, номинал их можно уменьшить в 2-3 раза (но при этом желательно оценить уровень пульсаций напряжения). Конденсаторы С12 и С13 составлены из двух по 1000 мкФ на 16 В. Неполярные конденсаторы С2, С5, С6, С8, С9 и С11 – широкораспространённые К73 или их импортные аналоги.

Диоды VD11 и VD12 лучше поставить германиевые, но подойдут и КД521, КД503, 1N4148 и любые из серии 1N400х.

Переключатели S1 и S2 – микротумблеры МТ1, предохранитель – стеклянный от 0,25 А до 1 А в установочной колодке ДПБ.

На рисунке 5 в правой части корпуса виден галетный переключатель, не указанный в электрической схеме. Это результат продолжающихся экспериментов с изменением уровня источника стабилизированного напряжения. Сейчас в него добавлены 2 стабилитрона и сделаны отводы для дискретного выбора «Uист» (рис.8 ).

Ещё одной полезной доработкой была бы переделка усилителя на ОР2 из линейного в логарифмический – тогда можно обойтись без переключателя S2 и, соответственно, одной шкалой на приборе РА2, но пока сделать этого не получилось.

Литература.
1. Электрические измерения. Под редакцией А.В. Фремке, Е.М. Душин, изд. «Энергия», Ленинград, 1980 г.
2. Электрические измерения. Под редакцией Е.Г. Шрамкова, изд. «Высшая школа», Москва, 1972 г.

Андрей Гольцов, г. Искитим

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
OP1, OP2 Операционный усилитель К544УД1А 2 В блокнот
VR1 Линейный регулятор

LM7815

1 В блокнот
VR2 Линейный регулятор

LM7915

1 В блокнот
VD1-VD4 Выпрямительный диод

1N4004

4 В блокнот
VD4-VD8 Выпрямительный диод

1N4005

4 В блокнот
VD9, VD10 Стабилитрон

КС522А

2 В блокнот
VD11, VD Диод

КД522А

2 В блокнот
HL1 Светодиод

АЛ307А

1 В блокнот
R1 Резистор

47 кОм

1 МЛТ-0,125 В блокнот
R2, R10 Резистор

10 кОм

2 МЛТ-0,125 В блокнот
R3 Резистор

3.9 кОм

1 МЛТ-0,5 В блокнот
R4 Резистор

750 Ом

1 МЛТ-0,125 В блокнот
R5 Резистор

5.1 МОм

1 МЛТ-1 В блокнот
R6 Резистор

75 кОм

1 МЛТ-0,125 В блокнот
R7 Резистор

2.0 МОм

1 МЛТ-0,5 В блокнот
R8 Резистор